19 research outputs found

    Developing novel temperature sensing garments for health monitoring applications

    Get PDF
    Embedding temperature sensors within textiles provides an easy method for measuring skin temperature. Skin temperature measurements are an important parameter for a variety of health monitoring applications, where changes in temperature can indicate changes in health. This work uses a temperature sensing yarn, which was fully characterized in previous work, to create a series of temperature sensing garments: armbands, a glove, and a sock. The purpose of this work was to develop the design rules for creating temperature sensing garments and to understand the limitations of these devices. Detailed design considerations for all three devices are provided. Experiments were conducted to examine the effects of contact pressure on skin contact temperature measurements using textile-based temperature sensors. The temperature sensing sock was used for a short user trial where the foot skin temperature of five healthy volunteers was monitored under different conditions to identify the limitations of recording textile-based foot skin temperature measurements. The fit of the sock significantly affected the measurements. In some cases, wearing a shoe or walking also heavily influenced the temperature measurements. These variations show that textile-based foot skin temperature measurements may be problematic for applications where small temperature differences need to be measured

    A wearable textile thermograph

    Get PDF
    In medicine, temperature changes can indicate important underlying pathologies such as wound infection. While thermographs for the detection of wound infection exist, a textile substrate offers a preferable solution to the designs that exist in the literature, as a textile is very comfortable to wear. This work presents a fully textile, wearable, thermograph created using temperature-sensing yarns. As described in earlier work, temperature-sensing yarns are constructed by encapsulating an off-the-shelf thermistor into a polymer resin micro-pod and then embedding this within the fibres of a yarn. This process creates a temperature-sensing yarn that is conformal, drapeable, mechanically resilient, and washable. This work first explored a refined yarn design and characterised its accuracy to take absolute temperature measurements. The influence of contact errors with the refined yarns was explored seeing a 0.24 ± 0.03 measurement error when the yarn was held just 0.5 mm away from the surface being measured. Subsequently, yarns were used to create a thermograph. This work characterises the operation of the thermograph under a variety of simulated conditions to better understand the functionality of this type of textile temperature sensor. Ambient temperature, insulating material, humidity, moisture, bending, compression and stretch were all explored. This work is an expansion of an article published in The 4th International Conference on Sensor and Applications

    Refinement of temperature sensing yarns

    Get PDF
    Body temperature is an important parameter to measure in a number of fields such as medicine and sport. In medicine temperature changes can indicate underlying pathologies such as wound infections, while in sport temperature can be associated to a change in performance. In both cases a wearable temperature monitoring solution is preferable. In earlier work a temperature sensing yarn has been developed and characterized. The yarns were constructed by embedding an off-the-shelf thermistor into a polymer resin micro-pod and then into the fibers of a yarn. This process created a temperature sensing yarn that was conformal, drapeable, mechanically resilient, and washable. This work builds on this early study with the purposes of identifying the steady state error bought about on the temperature measurements as a result of the polymer resin and yarn fibers. Here a wider range of temperatures than previously explored were investigated. Additionally two types of polymer resin with different thermal properties have been tested, with varying thicknesses, for the encapsulation of the thermistor. This provides useful additional information for optimizing the temperature sensing yarn design

    Flexible sensors—from materials to applications

    Get PDF
    Flexible sensors have the potential to be seamlessly applied to soft and irregularly shaped surfaces such as the human skin or textile fabrics. This benefits conformability dependant applications including smart tattoos, artificial skins and soft robotics. Consequently, materials and structures for innovative flexible sensors, as well as their integration into systems, continue to be in the spotlight of research. This review outlines the current state of flexible sensor technologies and the impact of material developments on this field. Special attention is given to strain, temperature, chemical, light and electropotential sensors, as well as their respective applications

    Classifying gait alterations using an instrumented smart sock and deep learning

    Get PDF
    This paper presents a non-invasive method of classifying gait patterns associated with various movement disorders and/or neurological conditions, utilising unobtrusive, instrumented socks and a deep learning network. Seamless instrumented socks were fabricated using three accelerometer embedded yarns, positioned at the toe (hallux), above the heel and on the lateral malleolus. Human trials were conducted on 12 able-bodied participants, an instrumented sock was worn on each foot. Participants were asked to complete seven trials consisting of their typical gait and six different gait types that mimicked the typical movement patterns associated with various movement disorders and neurological conditions. Four Neural Networks and an SVM were tested to ascertain the most effective method of automatic data classification. The Bi-LSTM generated the most accurate results and illustrates that the use of three accelerometers per foot increased classification accuracy compared to a single accelerometer per foot by 11.4%. When only a single accelerometer was utilised for classification, the ankle accelerometer generated the most accurate results in comparison to the other two. The network was able to correctly classify five different gait types: stomp (100%), shuffle (66.8%), diplegic (66.6%), hemiplegic (66.6%) and “normal walking” (58.0%). The network was incapable of correctly differentiating foot slap (21.2%) and steppage gait (4.8%). This work demonstrates that instrumented textile socks incorporating three accelerometer yarns were capable of generating sufficient data to allow a neural network to distinguish between specific gait patterns. This may enable clinicians and therapists to remotely classify gait alterations and observe changes in gait during rehabilitation
    corecore